Depth-of-field control
The larger size of the sensors (and therefore lens focal lengths) of DSLRs compared to digicams makes it much easier to limit the depth of field, for example to emphasize a face by blurring the background. This reduced depth of field can be a disadvantage when the photographer prefers to take pictures where as much of the scene as possible is sharply rendered.
Note that DSLR's typically have lens apertures smaller than the typical digicam's aperture setting ability, which is usually f/8. This is a limitation of the small sensor. In contrast, a DSLR can 'stop down' to f/16, f/22 or smaller aperture, depending upon the lens mounted on the camera and its f/stop range.
Angle of view
The angle of view of a lens depends upon its focal length and the camera's image sensor size; a sensor smaller than 35mm film format (36mm × 24mm frame) gives a narrower angle of view for a lens of a given focal length than does a camera equipped with a full-frame (35mm) sensor. As of 2007, only a few current DSLRs have full-frame sensors, including the Canon EOS-1Ds Mark II, the Canon EOS 5D, and the Nikon D3. The scarcity of full-frame DSLRs is partly a result of the cost of such large sensors. Medium format size sensors, such as those used in the Mamiya ZD among others, are even larger than full-frame (35mm) sensors, and capable of even greater image quality, but are even more expensive.
The impact of sensor size on field of view is referred to as the "crop factor" or "focal length multiplier", which is a factor by which a lens focal length can be multiplied to give the full-frame-equivalent focal length for a lens. Roughly APS-sized sensors have a crop factor of 1.5 to 1.7, so a lens with a focal length of 50mm will give a field of view equal to that of a 75mm to 85mm lens on a full-frame camera. This crop factor makes achieving long telephoto images on an APS-sensor camera easier than on a full-frame camera, though wide-angle views suffer by the same amount. Shallow depth-of-field images also tend to be more limited, since the wider the lens you use the more depth of field you get, so the smaller the sensor the more depth of field with the same f-number and field of view.
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home